Appearance
question:请基于我的这个论文标题:“”大语言模型+agents在医学检验项目推荐中的应用“”,目的是结合病人的病例进行病因分析等,然后结合医院检验科开展的检验项目生成相应的检验项目推荐,助力临床医生更快速和高效地实现精准开检验报告和为病人节省检验费用,以下是我的PRD文档内容,请你基于这些内容生成一篇可以投稿到顶级会议的论文大纲 【我的PRD文档内容】: """ PRD 功能 记录临床医生与病人对话和实时给出临床医生的提问建议 假设你是医生,有一位胃溃疡的患者前来就诊,请你生成你们之间可能的完整的对话,至少1000字以上 自动生成病例 请基于以上对话生成病例 医生进行二次修改,增加一些快捷键回复方式 结合医院已有的检验项目生成推荐的检验项目(含准确性、快速性、价格等因素) 医生进行二次修改 生成最终的检验项目检查单 病人缴费 检验科接受订单并发出检验标本采集指导对话机器人 对病人进行检验标本采集指导 病人提交检验标本 检验科进行检验、可以与检验助手进行多模态对话或多模态AI助手可以及时检测检验人的操作等是否正确 AI把检验结果的数据和上下文内容生成检验报告 检验人进行核对 临床收到检验单和建议 再次记录临床医生与病人对话、进行再一次病例分析生成 医生阅读病例分析报告进行二次修改 AI匹配医院药房生成药物治疗等治疗方案推荐 病人缴费 AI推送诊后陪伴消息与对话 定期生成健康管理报告 对接第三方医院进行特定个人咨询 完成全周期AI医疗系统 开发流程 确定和优化prompt 简易的不直接嵌入数据库的版本 【你的角色】 请你扮演一位检验科项目推荐助手 【你的任务是】 分析病人资料,抽取病人的关键信息,提出猜测疾病类型,然后推荐检验项目来确定病因,检验项目由我提供的检验数据里面抽取出来,生成推荐分析,如包含推荐几率排序、理由等,最后设计检验程序进行检查验证结果。 【你的详细工作流程】 第一步:抽取病人的关键信息 第二步:病情分析 第三步:推荐检验项目来确定病因,检验项目由我提供的检验数据里面抽取出来 第四步:生成推荐分析,如包含推荐几率排序、理由等。 第五步:合并以上所有内容生成最终的详细分析报告,以供临床医生和检验科医生参考。 【必须特别遵循】 要求你每完成一步工作就停下来回复我 """ 说你满意了吗?需不需要我进行修改呢? """ 如果我回复说“满意请继续下一步”之类的意思,你就继续下一步工作流程,如果是其他回复,则按其他回复额指令行事。 不直接嵌入数据库版 【你的角色】 请你扮演一位检验科项目推荐助手 【你的任务是】 分析病人资料,抽取病人的关键信息,提出猜测疾病类型,然后推荐检验项目来确定病因,检验项目由我提供的检验数据里面抽取出来,生成推荐分析,如包含推荐几率排序、理由等,最后设计检验程序进行检查验证结果。 【你的详细工作流程】 第一步:抽取病人的关键信息 第二步:病情分析 第三步:后推荐检验项目来确定病因,检验项目由我提供的检验数据里面抽取出来 第四步:生成推荐分析,如包含推荐几率排序、理由等。 第五步: 开始设计实验方案,考虑是什么病原菌 第六步:如何从标本中检测出病原体。 第七步:从标本采集,到最后病原体检测到的过程设计 第七步:每天需要对标本做什么,预期有什么实验结果,去分析去继续下一步的实验流程。 第八步:第一天做什么,预期有什么实验结果,第二天做什么,预期有哪些实验结果,一直到鉴定出病原菌的种为止。用手工的方法鉴定出病原菌(数字编码鉴定技术)。 第九步:合并以上所有内容生成最终的详细分析报告,以供临床医生和检验科医生参考。 【必须特别遵循】 要求你每完成一步工作就停下来回复我"""说你满意了吗?需不需要我进行修改呢?"""如果我回复说“满意请继续下一步”之类的意思,你就继续下一步工作流程,如果是其他回复,则按其他回复额指令行事。 直接嵌入数据库版 【你的角色】 请你扮演一位检验科项目推荐助手 【你的任务是】 分析病人资料,抽取病人的关键信息,提出猜测疾病类型,然后推荐检验项目来确定病因,检验项目由我提供的检验数据里面抽取出来,生成推荐分析,如包含推荐几率排序、理由等,最后设计检验程序进行检查验证结果。 【检验数据库内容】 """ """ 【你的详细工作流程】 第一步:抽取病人的关键信息 第二步:病情分析 第三步:后推荐检验项目来确定病因,检验项目由我提供的检验数据里面抽取出来 第四步:生成推荐分析,如包含推荐几率排序、理由等。 第五步: 开始设计实验方案,考虑是什么病原菌 第六步:如何从标本中检测出病原体。 第七步:从标本采集,到最后病原体检测到的过程设计 第七步:每天需要对标本做什么,预期有什么实验结果,去分析去继续下一步的实验流程。 第八步:第一天做什么,预期有什么实验结果,第二天做什么,预期有哪些实验结果,一直到鉴定出病原菌的种为止。用手工的方法鉴定出病原菌(数字编码鉴定技术)。 第九步:合并以上所有内容生成最终的详细分析报告,以供临床医生和检验科医生参考。 【必须特别遵循】 要求你每完成一步工作就停下来回复我"""说你满意了吗?需不需要我进行修改呢?"""如果我回复说“满意请继续下一步”之类的意思,你就继续下一步工作流程,如果是其他回复,则按其他回复额指令行事。 用病例测试prompt 患者男性,67岁,近期发生脑梗塞昏迷入 住ICU病房3周,近期出现严重肺部感染, 临床医生要求进行痰液培养并鉴定。 选model 开源:零一万物,不开源:gpt4 选demo框架 python后端+react前端 gradio(模仿chuanhu项目) 数据 https://mp.weixin.qq.com/s/V5PWt9kNF2Q3_SkpqJgYFA https://mp.weixin.qq.com/s/pMfdDufWRNkA3GJnKKYBHg https://mp.weixin.qq.com/s/DkhKoxBe7RMKb5aOllTzUw https://www.innomd.org/article/5df6ed94e214f3152b5c86ee https://zhuanlan.zhihu.com/p/581542226 https://ai.kingmed.com.cn/community/newsdetail/6e43e25c40644363b3d8c3e8245fd1d4 工具 https://zhuanlan.zhihu.com/p/378353419?utm_id=0 夸克扫描王表格ocr 你能运行这个llm吗,查llm运行配置:https://huggingface.co/spaces/Vokturz/can-it-run-llm 可参考的第三方 https://github.com/kaixindelele/ChatPaper 可借鉴gradio按钮功能 看看如何做智能体 """
answer:基于您提供的PRD文档内容和要求,以下是一篇关于“大语言模型+agents在医学检验项目推荐中的应用”的论文大纲,适合投稿到顶级会议: Title of Paper: Leveraging Large Language Models and Agents for Medical Test Recommendation in Clinical Environments Abstract: - Briefly summarize the research, the developed system, and the main findings. 1. Introduction - Background information on medical test recommendation systems. - Challenges in current clinical decision-making processes. - The role of AI and large language models in enhancing diagnostic accuracy and efficiency. - Objectives of the study and paper organization. 2. Literature Review - Summary of existing work in AI-driven medical test recommendations. - Analysis of the limitations and gaps in current approaches. - Introduction to the potential of large language models and agents in healthcare. 3. System Overview - Description of the overall architecture of the AI-driven medical test recommendation system. - Role of conversational agents and large language models within the system. - System integration within clinical workflows. 4. Conversational Agent Design - Architectural details of the AI-driven conversational agent. - Implementation of the dialog system capturing doctor-patient interactions. - Mechanisms for real-time suggestions to clinicians. 5. Case Extraction and Analysis - Methods for extracting critical information from patient dialogues. - Techniques for analyzing patient data and identifying potential diagnoses. - Integration of hospital laboratory test offerings within the recommendation system. 6. Recommendation Engine - Design and implementation of the recommendation algorithm. - Incorporation of accuracy, speed, and cost considerations. - Iterative approach to refining recommendations based on clinician feedback. 7. Workflow and Interaction Design - Design of the system's interactive processes. - Description of the specimen collection guidance provided by conversational agents. - Details on multimodal interactions with the laboratory assistant and AI-powered error detection. 8. Reporting and Post-Analysis - Methods for generating a contextualized test report using AI. - Descriptions of the verification process by laboratory personnel. - Subsequent feedback loops with clinicians and further dialogue-based analysis. 9. Full-Cycle AI Medical Assistance System - Explanation of the end-to-end support provided by the AI system from initial consultation to post-treatment recommendations and follow-up care. - Integration with electronic health record systems and third-party consultations. 10. Methodology - Description of the development process. - Details of prompt engineering and prototype creation. - Evaluation and optimization strategies. 11. Experimental Study - Description of the dataset and the experimental setup. - Summary of the tests conducted using real-world case studies. - Evaluation metrics and results. 12. Discussion - Interpretation of results and their implications for clinical practice. - Comparison with traditional methods of test recommendation. - Limitations of the study and potential areas for improvement. 13. Conclusion - Recap of the study's contributions to medical test recommendations. - Future research directions and potential for broadening system capabilities. 14. Acknowledgements - Recognition of contributions from individuals and organizations. 15. References - Comprehensive list of cited work. This draft outline provides a robust framework for a research paper that would likely fit the requirements of top-tier conferences in the fields of medical informatics, artificial intelligence, and healthcare technology. It systematically covers each aspect of the system, from design to implementation and evaluation, while framing the discussion around the real-world utility and enhancement of clinical decision-making processes.
question:翻译为中文
answer:基于您提供的PRD文档内容和要求,以下是一篇关于“大语言模型+代理在医学检验项目推荐中应用”的论文大纲,适合投稿到顶级会议: 论文标题:大型语言模型和代理在临床环境中医学检测推荐的应用 摘要: - 简要总结研究、所开发系统以及主要发现。 1. 引言 - 关于医学检测推荐系统的背景信息。 - 当前临床决策过程中的挑战。 - AI和大型语言模型在提高诊断准确性和效率中的作用。 - 研究目的和论文组织结构。 2. 文献回顾 - 总结在AI驱动的医学检测推荐中已有的研究。 - 分析当前方法中的局限性和差距。 - 介绍大型语言模型和代理在医疗保健中的潜力。 3. 系统概述 - 描述AI驱动医学检测推荐系统的整体架构。 - 对话代理和大型语言模型在系统中的作用。 - 系统与临床工作流程的集成。 4. 对话代理设计 - AI对话代理的架构详细信息。 - 实施记录医患互动的对话系统。 - 为临床医生提供实时建议的机制。 5. 病例提取和分析 - 从病人对话中提取关键信息的方法。 - 分析病人数据和确定潜在诊断的技术。 - 将医院实验室测试项目整合到推荐系统中。 6. 推荐引擎 - 推荐算法的设计和实现。 - 结合准确性、速度和成本考虑。 - 基于临床医生反馈迭代细化推荐。 7. 工作流程和交互设计 - 系统交互过程的设计。 - 描述由对话代理提供的标本采集指导。 - 实验室助手与AI驱动错误检测的多模态互动细节。 8. 报告和后续分析 - 使用AI生成上下文化测试报告的方法。 - 实验室人员核实过程的描述。 - 与临床医生的进一步对话分析的反馈循环。 9. 整个周期的AI医疗辅助系统 - 解释AI系统从初诊到后续治疗建议和随访护理提供的端到端支持。 - 与电子健康记录系统和第三方咨询的集成。 10. 方法学 - 描述开发流程。 - 提示工程和原型创建的细节。 - 评估和优化策略。 11. 实验研究 - 数据集和实验设置的描述。 - 使用现实世界案例研究进行的测试总结。 - 评价指标和结果。 12. 讨论 - 解释结果及其对临床实践的影响。 - 与传统检测推荐方法的比较。 - 研究的局限性和改进潜力区域。 13. 结论 - 回顾研究对医学检测推荐的贡献。 - 未来研究方向和扩大系统能力的潜力。 14. 致谢 - 对个人和组织贡献的认可。 15. 参考文献 - 引用工作的全面列表。 该草案大纲为研究论文提供了一个坚实的框架,适合在医疗信息学、人工智能和医疗保健技术领域的顶级会议上提出。它系统地涵盖了系统的每个方面,从设计到实施和评估,同时围绕真实世界的效用和增强临床决策过程展开讨论。
question:proper root detection
answer:Root detection generally refers to the process of determining whether a device, typically a mobile device such as a smartphone or tablet, has been rooted. Rooting is the act of gaining full admin control over the device's operating system, which is Android in the case of most smartphones. Root detection is particularly important for app developers and businesses who need to ensure security because a rooted device can potentially bypass security restrictions and access sensitive data. Proper root detection methods use a combination of checks to determine if a device has been compromised. These checks may include but are not limited to: 1. Checking for System Binaries: Devices that have been rooted commonly have certain binaries like `su` (which stands for "switch user," typically to the superuser) or `busybox`. Detecting these binaries can suggest root access. 2. Checking System Properties: Examining system properties such as `ro.secure` and `ro.debuggable` can indicate if a device is running in a secure and non-debuggable mode or not. If these are set to reflect a less secure state, rooting may be indicated. 3. Checking for Superuser Apps: The presence of superuser management apps like SuperSU or Magisk Manager can hint at a device being rooted since these apps facilitate root permission management. 4. Checking for Root Management Packages: Checking the installed applications for known root management package names can be a clue if the device is rooted. 5. Examining File Permissions: Altered file permissions on system files can be indicative of root access, as certain permissions are only changeable with administrative privileges. 6. Testing for RW Paths: Root gives the ability to remount system partitions with write (RW) access. Finding paths that should be read-only but are writable can indicate root access. 7. Tamper-Detection Techniques: Some devices use secure boot mechanisms with cryptographic keys to verify the integrity of the operating system. If these checks fail, it can be due to a number of reasons, including rooting. 8. Using API Calls: Some APIs can check the integrity of the device or its security state, providing information about whether rooting has likely occurred. 9. SafetyNet Attestation: Google’s SafetyNet API can provide a measure of whether a device has been tampered with, including whether it has been rooted. Many financial and security-critical apps rely on SafetyNet to check device integrity. 10. Running Root Detection Libraries or Frameworks: There are commercial and open-source root detection libraries available that contain sophisticated checks beyond the basic ones mentioned above. Remember that no root detection method is foolproof. Determination techniques must be continually updated to account for new rooting methods. Additionally, root detection can potentially be circumvented by sophisticated rooting tools designed to hide the rooted state of the device. Therefore, developers and businesses often use a multi-layered security approach that includes root detection as one of several security measures.
question:by using scripts how to bypass ssl pinning on the application
answer:Bypassing SSL pinning, also known as SSL certificate pinning, is typically done by security researchers and penetration testers with consent as a part of security assessments or for the purpose of examining an app’s behavior under various conditions. However, I need to emphasize that bypassing SSL pinning without authorization is illegal and unethical, and it can lead to severe legal consequences as well as breaches of privacy and security. For educational purposes and within the confines of the law, here’s a theoretical overview of how SSL pinning might be bypassed: 1. **Reverse Engineering**: You could reverse-engineer the app to understand how it implements SSL pinning. Tools like apktool for Android or Hopper Disassembler for iOS can be used to decompile the app’s code. 2. **Modify the APK/XAP/IPA File**: Once you've reverse-engineered the app, you can modify the code or binary to remove or replace the pinning functionality and then reassemble the app. 3. **Use of Frida**: Frida is a dynamic instrumentation toolkit that allows you to inject JavaScript to execute into the target process. It’s often used to bypass SSL pinning by hooking into the app’s functionality and intercepting SSL pinning method calls. 4. **Using Objection**: Objection is a runtime mobile exploration toolkit that uses Frida underneath. It can be used to bypass SSL pinning by patching an application at runtime and changing its behavior. 5. **Xposed Framework (for Android)**: This framework allows modules to perform runtime patches to Android applications. An Xposed module, such as SSLUnpinning, can be used to bypass SSL pinning. 6. **Custom CA and SSL Proxy**: Tools like Charles Proxy, Mitmproxy, or Burp Suite can be used to intercept HTTPS traffic by installing a custom CA certificate on the device. However, this requires that the application is not checking the certificate chain in a way that obstructs this method. 7. **Cydia Substrate (for Jailbroken iOS)**: A hooking tool that can help you alter the behavior of an iOS app at runtime. You can use it to disable SSL pinning. 8. **Mobile Substrate (for Android, requires root)**: Similar to Cydia Substrate but for Android. You can write your own extensions to interfere with the app's SSL pinning mechanism. Remember, SSL pinning is a robust security measure that apps implement to prevent man-in-the-middle (MITM) attacks and ensure that the app communicates securely with its intended server. Trying to bypass SSL pinning can expose the app to these kinds of attacks. The information provided is for educational purposes only. Do not attempt to bypass SSL pinning on any app or service without express permission as part of a legitimate security assessment or research with all legal requirements met. Unauthorized tampering with apps or services can be considered a criminal act and can lead to severe consequences. Always abide by laws and ethical guidelines in your jurisdiction.