Skip to content
🤔prompts chat🧠
🔍
question:Look at the results: Enter seed text (type 'quit' to stop): Physics is Generated Text: one of the most fundamental scientific disciplines, with Enter seed text (type 'quit' to stop): Black holes are Generated Text: formed when massive stars collapse at the end Enter seed text (type 'quit' to stop): Physics is a science that Generated Text: generates random text without any human input, just Enter seed text (type 'quit' to stop): The law of conservation of energy states that Generated Text: generates text without any human input, just a Enter seed text (type 'quit' to stop): One of the most famous experiments in quantum mechanics is Generated Text: takes the csv file, this function should will Enter seed text (type 'quit' to stop): If you could observe a black hole, you would notice Generated Text: not even light, can escape. Black holes are Enter seed text (type 'quit' to stop): In physics, symmetry is important because Generated Text: space where gravity is so strong that nothing, Enter seed text (type 'quit' to stop): Transformers differ from traditional sequential models in that Generated Text: takes the Python Language. Give Give input as

answer:Based on the results you provided, it appears that the model is able to generate text that begins contextually relevant to the seed text; however, it doesn't always stay on topic or provide scientifically accurate or complete responses. Here are some observations: 1. For seed texts closely related to text in the training data, like "Physics is" or "Black holes are," the model produces coherent and accurate continuations that are consistent with the training dataset. 2. The response to the seed text about the law of conservation of energy, "The law of conservation of energy states that," is not consistent with what would be expected from a well-rounded continuation on the topic. It instead repeats a phrase about text generation that seems unrelated to the concept of energy conservation. 3. For the prompt about quantum mechanics experiments and the observation of black holes, the model provides a somewhat related or partially correct response but fails to deliver a meaningful continuation that aligns with the expectations set by these prompts. 4. When given prompts relating to its own architecture, such as "Transformers differ from traditional sequential models in that," the output does not seem to be accurate or relevant to transformer models. 5. There are instances where the output looks like it has mixed up different contexts or topics, such as referring to handling a CSV file in the quantum mechanics prompt response, which suggests confusion from the model. Some potential reasons for these issues could be: - The dataset provided for training the model is short and seems to mix different contexts: a text about a challenge related to creating a Transformer model and some descriptions of scientific concepts, which might have led to a somewhat conflated understanding. - The model might be overfitting on particular phrases or patterns seen in the small dataset, resulting in repeated phrases or incoherent responses when facing novel or more complex seed sentences. - It appears that the model has a tendency to repeat what it has seen verbatim rather than generating new, creative continuations. To further improve the model's performance, consider the following: - Expanding the training dataset considerably to cover a wider array of topics and contexts as well as to provide more varied examples of sentence structures. - Incorporating regularization techniques or exploring different model architectures that may generalize better on smaller datasets. - Using techniques like prompt engineering, where prompts are carefully designed to guide the model toward generating specific types of responses. - Post-processing the output to filter out irrelevant or repeated information. It would also be beneficial to conduct further tests with a variety of prompts uniquely designed to test specific aspects of the model, such as creativity, accuracy, and coherency, as previously mentioned in my suggestions. The goal is to get a more in-depth understanding of the model's capabilities and limitations.

question:Give me a variable to print the model param count

answer:To print the total number of parameters in the model, you can iterate through the model's parameters using `.parameters()` method provided by PyTorch and sum up the number of elements in each parameter tensor. Here's a simple method to achieve that: ```python def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) # Example usage with your model: total_params = count_parameters(moe_model) print(f"Total trainable parameters: {total_params}") ``` The `numel()` function returns the total number of elements in the tensor, so by iterating over all `parameters()` (and ensuring they require gradients, which indicates they are trainable) and summing the `numel()` output, you get the total number of trainable parameters in the model.

question:Can you modify the text generation part of the code to only stop token generation when the model produces a point "full sentence stop", here is the part to modify: while True: try: # Get user input seed_text = input("Enter seed text (type 'quit' to stop): ") # Check if user wants to quit the interaction if seed_text.lower() == "quit": print("Exiting text generation chat.") break # User input is not empty and not “quit”, generate text if seed_text.strip(): num_generate = 8 # Number of words to generate temperature = 0.7 # Sampling temperature, higher will increase diversity # Use the trained model to generate text generated_text = generate_text(moe_model, dataset, seed_text, num_generate, temperature) print("Generated Text:", generated_text) else: print("Seed text cannot be empty.") except KeyboardInterrupt: # Handle KeyboardInterrupt (Ctrl+C) to gracefully exit print("nExiting text generation chat.") break*

answer:To modify the text generation code to only stop generating tokens when the model produces a period (indicating the end of a sentence), we can change the `generate_text` function to continue producing tokens until a period is generated. We also need to remove the `num_generate` limitation and instead use a loop that continuously generates tokens until a period is encountered. Here's the updated `generate_text` function: ```python def generate_text(model, dataset, seed_text, temperature=1.0): model.eval() # Put the model in evaluation mode generated_tokens = [] # Initial sequence (prefix) to start the generation process input_sequence = [dataset.vocab.get(word, dataset.vocab["<pad>"]) for word in seed_text.split()] # Convert to token IDs current_sequence = torch.tensor(input_sequence, dtype=torch.long).unsqueeze(0) # Continuously generate tokens until a period is produced while True: with torch.no_grad(): output = model(current_sequence) # Get probabilities, apply temperature scaling, and sample from the distribution probabilities = F.softmax(output[-1] / temperature, dim=0).detach() next_token_idx = torch.multinomial(probabilities, 1).item() # Append token to the current sequence and to the generated tokens generated_tokens.append(next_token_idx) current_sequence = torch.cat((current_sequence, torch.tensor([[next_token_idx]])), 1) # Check if the token corresponds to a period (full stop) if dataset.idx2token[next_token_idx] == ".": break # Convert tokens to words generated_text = seed_text + " " + " ".join([dataset.idx2token.get(token, "<unk>") for token in generated_tokens]) return generated_text # And here is the updated interactive loop using the modified generate_text function: while True: try: # Get user input seed_text = input("Enter seed text (type 'quit' to stop): ") # Check if user wants to quit the interaction if seed_text.lower() == "quit": print("Exiting text generation chat.") break # User input is not empty and not "quit", generate text if seed_text.strip(): temperature = 0.7 # Sampling temperature, higher will increase diversity # Use the trained model to generate text until a full stop is produced generated_text = generate_text(moe_model, dataset, seed_text, temperature) print("Generated Text:", generated_text) else: print("Seed text cannot be empty.") except KeyboardInterrupt: # Handle KeyboardInterrupt (Ctrl+C) to gracefully exit print("nExiting text generation chat.") break ``` In this modified version, the `generate_text` function now includes a `while True` loop that runs indefinitely until a period is encountered. The generated text starts with the `seed_text` and adds the generated tokens until it reaches a period. Adjust the maximum length of token generation if needed to prevent excessively long generations without a period.

question:Dans le cas d'un µC PIC renfermant le module ADC de résolution 12 bits, si on applique une tension analogique Ve sur l'entrée AN2, la lecture du résultat de conversion AN donne la valeur décimale 1310 par la fonction de MikroC : a- ADC_Read(2), si Vref- et Vref+ sont respectivement 0 V et +5 V pour Ve = 1.6 V. b- ADC_Read(2), si Vref- et Vref+ sont respectivement +2.5 V et +5 V pour Ve = 1.6 V. c- ADC_Read(0), si Vref- et Vref+ sont respectivement 0 V et +5 V pour Ve = 1.6 V. d- ADC_Read(1310), si Vref- et Vref+ sont respectivement 0 V et +5 V pour Ve = 15,996 V.

answer:Dans un microcontrôleur PIC avec un ADC de résolution de 12 bits, la valeur numérique représentative de la tension analogique d'entrée est obtenue en convertissant la tension d'entrée en un nombre allant de 0 à 4095 (car 2^12 = 4096 valeurs possibles). La formule utilisée pour la conversion est généralement la suivante : [ N = frac{{V_{e} - V_{ref-}}}{{V_{ref+} - V_{ref-}}} times (2^{n} - 1) ] Où : - ( N ) est la valeur numérique lue par l'ADC - ( V_{e} ) est la tension d'entrée analogique - ( V_{ref-} ) est la tension de référence basse de l'ADC - ( V_{ref+} ) est la tension de référence haute de l'ADC - ( n ) est le nombre de bits de résolution de l'ADC Analysons chaque option pour voir laquelle est correcte : a- Avec ( V_{ref-} = 0 ) V, ( V_{ref+} = 5 ) V et ( V_{e} = 1.6 ) V : [ N = frac{{1.6 V - 0 V}}{{5 V - 0 V}} times (2^{12} - 1) = frac{{1.6}}{{5}} times 4095 ≈ 1310 ] Cette option semble correcte, car avec les références données, une valeur analogique de 1.6 V donnerait effectivement une lecture proche de 1310. b- Avec ( V_{ref-} = 2.5 ) V, ( V_{ref+} = 5 ) V et ( V_{e} = 1.6 ) V, la tension d'entrée est en réalité en dessous de la tension de référence basse, ce qui ne peut pas être correctement converti par l'ADC. c- La fonction `ADC_Read(0)` ferait une lecture sur l'entrée AN0, pas AN2, donc cette option est incorrecte. d- L'appel de fonction `ADC_Read(1310)` n'a pas de sens, car l'argument attendu par la fonction `ADC_Read` est le numéro du canal à lire (dans le cas présent, cela devrait être `ADC_Read(2)`), et non la valeur lue de l'ADC. Certains détails supplémentaires à prendre en compte : - La tension ( V_{e} ) indiquée doit correspondre au numéro de canal correct. La fonction `ADC_Read(2)` suggère qu'on lit la valeur sur le canal AN2. Il faut s'assurer que la tension de 1.6 V est bien celle appliquée sur AN2. - La fonction `ADC_Read(2)` correspond à une instruction pour lire la valeur de l'ADC sur le canal 2 (AN2), et non pour générer ou sortir une valeur spécifique. Conclusion : l'option a) est la plus plausible étant donné l'information fournie.

Released under the Storm License.

has loaded