Appearance
question:Let M be an n-dimensional Riemannian manifold with scalar curvature R = 6 and Ricci curvature Ric = 2g, where g is the metric tensor. Determine the specific value of n.
answer:To determine the specific value of n, we can use the relationship between the scalar curvature R and the Ricci curvature Ric. The scalar curvature is the trace of the Ricci curvature, which can be expressed as: R = g^(ij) * Ric_(ij) where g^(ij) is the inverse of the metric tensor g_(ij), and Ric_(ij) is the Ricci curvature tensor. We are given that Ric = 2g, so Ric_(ij) = 2g_(ij). Substituting this into the equation, we get: R = g^(ij) * 2g_(ij) Now, we can use the fact that the trace of the product of a matrix and its inverse is equal to the dimension of the matrix. In this case, the dimension of the matrix is n, so: R = 2n We are given that R = 6, so: 6 = 2n Dividing both sides by 2, we get: n = 3 Therefore, the specific value of n is 3. The Riemannian manifold M is a 3-dimensional manifold with scalar curvature R = 6 and Ricci curvature Ric = 2g.
question:Consider a Riemannian manifold with the following metric: ds^2 = (4x+1)dx^2 + (2y^2+3z^2)dy^2 + 4xyz^2dz^2 Determine the Ricci curvature of this manifold at the point (x,y,z) = (1,1,1).
answer:To compute the Ricci curvature, we first need to compute the Christoffel symbols of the second kind, which are given by: Gamma^k_{ij} = frac{1}{2} g^{kl} (frac{partial g_{il}}{partial x^j} + frac{partial g_{jl}}{partial x^i} - frac{partial g_{ij}}{partial x^l}) The metric tensor g_{ij} is given by the matrix: g_{ij} = begin{pmatrix} 4x+1 & 0 & 0 0 & 2y^2+3z^2 & 0 0 & 0 & 4xyz^2 end{pmatrix} The inverse metric tensor g^{ij} is given by the matrix: g^{ij} = begin{pmatrix} frac{1}{4x+1} & 0 & 0 0 & frac{1}{2y^2+3z^2} & 0 0 & 0 & frac{1}{4xyz^2} end{pmatrix} Now, we compute the Christoffel symbols of the second kind: Gamma^1_{11} = frac{1}{2} g^{11} (frac{partial g_{11}}{partial x^1} + frac{partial g_{11}}{partial x^1} - frac{partial g_{11}}{partial x^1}) = frac{1}{2(4x+1)}(4) = frac{2}{4x+1} Gamma^2_{12} = frac{1}{2} g^{22} (frac{partial g_{12}}{partial x^2} + frac{partial g_{21}}{partial x^1} - frac{partial g_{11}}{partial x^2}) = 0 Gamma^3_{13} = frac{1}{2} g^{33} (frac{partial g_{13}}{partial x^3} + frac{partial g_{31}}{partial x^1} - frac{partial g_{11}}{partial x^3}) = 0 Gamma^2_{22} = frac{1}{2} g^{22} (frac{partial g_{22}}{partial x^2} + frac{partial g_{22}}{partial x^2} - frac{partial g_{22}}{partial x^2}) = frac{1}{2(2y^2+3z^2)}(4y) = frac{2y}{2y^2+3z^2} Gamma^3_{23} = frac{1}{2} g^{33} (frac{partial g_{23}}{partial x^3} + frac{partial g_{32}}{partial x^2} - frac{partial g_{22}}{partial x^3}) = 0 Gamma^3_{33} = frac{1}{2} g^{33} (frac{partial g_{33}}{partial x^3} + frac{partial g_{33}}{partial x^3} - frac{partial g_{33}}{partial x^3}) = frac{1}{2(4xyz^2)}(4yz^2) = frac{yz^2}{xyz^2} = frac{1}{x} All other Christoffel symbols are symmetric, so they are equal to the ones computed above. Next, we compute the Riemann curvature tensor: R^k_{phantom{k}ijl} = frac{partial Gamma^k_{jl}}{partial x^i} - frac{partial Gamma^k_{il}}{partial x^j} + Gamma^k_{im} Gamma^m_{jl} - Gamma^k_{jm} Gamma^m_{il} We only need to compute the non-zero components: R^1_{phantom{1}212} = frac{partial Gamma^1_{12}}{partial x^1} - frac{partial Gamma^1_{22}}{partial x^2} + Gamma^1_{21} Gamma^1_{12} - Gamma^1_{22} Gamma^1_{21} = -frac{partial Gamma^1_{22}}{partial x^2} = -frac{partial}{partial x^2} left( frac{2y}{2y^2+3z^2} right) = 0 R^2_{phantom{2}323} = frac{partial Gamma^2_{23}}{partial x^2} - frac{partial Gamma^2_{33}}{partial x^3} + Gamma^2_{32} Gamma^2_{23} - Gamma^2_{33} Gamma^2_{32} = -frac{partial Gamma^2_{33}}{partial x^3} = -frac{partial}{partial x^3} left( frac{1}{x} right) = 0 R^3_{phantom{3}131} = frac{partial Gamma^3_{31}}{partial x^1} - frac{partial Gamma^3_{11}}{partial x^3} + Gamma^3_{13} Gamma^3_{31} - Gamma^3_{11} Gamma^3_{13} = -frac{partial Gamma^3_{11}}{partial x^3} = -frac{partial}{partial x^3} left( frac{2}{4x+1} right) = 0 All other components of the Riemann curvature tensor are zero. Finally, we compute the Ricci curvature tensor: R_{ij} = R^k_{phantom{k}ikj} At the point (x,y,z) = (1,1,1), all components of the Riemann curvature tensor are zero, so the Ricci curvature tensor is: R_{ij} = begin{pmatrix} 0 & 0 & 0 0 & 0 & 0 0 & 0 & 0 end{pmatrix}
question:Let M be a 2-dimensional manifold with metric given by ds^2 = dr^2 + sin^2(r) dtheta^2 . Find the Ricci curvature of M at the point (frac{pi}{2},0), where r denotes the radial coordinate and theta denotes the angular coordinate.
answer:To find the Ricci curvature of the 2-dimensional manifold M, we first need to compute the Christoffel symbols and then the components of the Riemann curvature tensor. Finally, we will contract the Riemann tensor to obtain the Ricci tensor. The metric tensor components are given by: g_{rr} = 1 g_{rtheta} = g_{theta r} = 0 g_{thetatheta} = sin^2(r) Now, we compute the Christoffel symbols: Gamma^r_{rr} = frac{1}{2}g^{rr}(partial_r g_{rr} + partial_r g_{rr} - partial_r g_{rr}) = 0 Gamma^r_{rtheta} = Gamma^r_{theta r} = frac{1}{2}g^{rr}(partial_r g_{rtheta} + partial_theta g_{rr} - partial_r g_{thetatheta}) = 0 Gamma^r_{thetatheta} = frac{1}{2}g^{rr}(partial_theta g_{thetatheta} + partial_theta g_{thetatheta} - partial_r g_{thetatheta}) = -sin(r)cos(r) Gamma^theta_{rr} = frac{1}{2}g^{thetatheta}(partial_r g_{rr} + partial_r g_{rr} - partial_theta g_{rtheta}) = 0 Gamma^theta_{rtheta} = Gamma^theta_{theta r} = frac{1}{2}g^{thetatheta}(partial_r g_{thetatheta} + partial_theta g_{rtheta} - partial_r g_{rtheta}) = cot(r) Gamma^theta_{thetatheta} = frac{1}{2}g^{thetatheta}(partial_theta g_{thetatheta} + partial_theta g_{thetatheta} - partial_theta g_{thetatheta}) = 0 Next, we compute the Riemann curvature tensor components: R^r_{theta rtheta} = partial_theta Gamma^r_{rtheta} - partial_r Gamma^r_{thetatheta} + Gamma^r_{thetatheta}Gamma^theta_{rtheta} - Gamma^r_{rtheta}Gamma^theta_{thetatheta} = -cos(r)sin(r) + cot(r)sin^2(r) R^theta_{rtheta r} = partial_r Gamma^theta_{rtheta} - partial_theta Gamma^theta_{rr} + Gamma^theta_{rr}Gamma^r_{rtheta} - Gamma^theta_{rtheta}Gamma^r_{thetatheta} = -csc(r)cot(r) The other components of the Riemann tensor are zero due to the symmetry properties. Now, we contract the Riemann tensor to obtain the Ricci tensor components: R_{rr} = R^r_{r r r} = 0 R_{rtheta} = R_{theta r} = 0 R_{thetatheta} = R^theta_{thetathetatheta} = -csc(r)cot(r) Finally, we evaluate the Ricci tensor components at the point (frac{pi}{2}, 0): R_{rr}(frac{pi}{2}, 0) = 0 R_{rtheta}(frac{pi}{2}, 0) = 0 R_{thetatheta}(frac{pi}{2}, 0) = -csc(frac{pi}{2})cot(frac{pi}{2}) = 0 Thus, the Ricci curvature of M at the point (frac{pi}{2}, 0) is given by the Ricci tensor: R_{ij} = begin{pmatrix} 0 & 0 0 & 0 end{pmatrix}
question:Let M be a 3-dimensional manifold with a Riemannian metric g, and let {e1, e2, e3} be an orthonormal basis for T_p M at some point p of M, such that the Christoffel symbols are all zero at p. If the components of the Riemannian curvature tensor with respect to this basis are given by: R_{1212} = 2, R_{1313} = 3, R_{2323} = -1 Find the Ricci curvature Ric(p) of M at the point p.
answer:To find the Ricci curvature Ric(p) at the point p, we need to compute the Ricci tensor components. The Ricci tensor is obtained by contracting the Riemannian curvature tensor, i.e., summing over one of the indices. In our case, we have a 3-dimensional manifold, so the Ricci tensor will be a 3x3 matrix. The components of the Ricci tensor are given by: Ric_{ij} = R^k_{ikj} where the indices i, j, and k range from 1 to 3. Using the given components of the Riemannian curvature tensor, we can compute the Ricci tensor components: Ric_{11} = R^k_{1k1} = R^1_{111} + R^2_{121} + R^3_{131} = 0 + 2 + 3 = 5 Ric_{22} = R^k_{2k2} = R^1_{212} + R^2_{222} + R^3_{232} = 2 + 0 - 1 = 1 Ric_{33} = R^k_{3k3} = R^1_{313} + R^2_{323} + R^3_{333} = 3 - 1 + 0 = 2 Since the Ricci tensor is symmetric, we have: Ric_{12} = Ric_{21} = R^k_{1k2} = 0 Ric_{13} = Ric_{31} = R^k_{1k3} = 0 Ric_{23} = Ric_{32} = R^k_{2k3} = 0 Thus, the Ricci tensor at point p is given by: Ric(p) = | 5 0 0 | | 0 1 0 | | 0 0 2 | This matrix represents the Ricci curvature Ric(p) of the manifold M at the point p.